Acute Myeloid Leukemia With t(9;11)(p21-22;q23)

Common Properties of Dysregulated Ras Pathway Signaling and Genomic Progression Characterize De Novo and Therapy-Related Cases

Pranil Chandra, DO,1 Rajyalakshmi Luthra, PhD,1 Zhuang Zuo, MD, PhD,1 Hui Yao, PhD,2 Farhad Ravandi, MD,3 Neeli Reddy, MS,1 Guillermo Garcia-Manero, MD,3 Hagop Kantarjian, MD,3 and Dan Jones, MD, PhD1

Key Words: Leukemogenesis; Mixed lineage leukemia (MLL); Ras Signaling; Treatment effects; microRNA; let-7

DOI: 10.1309/AJCPGII1TT4NYOGI

Upon completion of this activity you will be able to:

• describe the salient clinicopathologic and molecular genetic features of acute myeloid leukemia with t(9;11)(p21-22;q23), including factors that may contribute to leukemogenesis and/or leukemic progression.

• discuss similarities and differences between de novo and therapy-related disease with t(9;11)(p21-22;q23).

Abstract

We compared pathogenetic features of 32 de novo and 29 therapy-related (t) t(9;11)(p21-22;q23)/MLLT3-MLL acute myeloid leukemia (AML) cases to identify progression factors and to assess whether distinction between these manifestations is warranted. MLLT3-MLL rearrangement was commonly the sole karyotypic abnormality at diagnosis, with many secondary chromosomal changes emerging at relapse in both subgroups. Ras point mutations were common in both groups (overall, 18/50 [36%]) and associated with monocytic phenotype and aneuploid progression. Expression patterns of 675 microRNAs profiled in 7 cases were also similar, with let-7 species linked to Ras down-modulation expressed at low levels. Outcome for both groups was poor (relapsed or refractory in 49/61 [80%] cases); however, patients with t-AML were generally older and female, with worse outcome (P = .03), likely secondary to t-AML mostly arising in patients with breast cancer following topoisomerase inhibitor–containing chemotherapy. Ras activation seems to complement the MLLT3-MLL oncogene in transformation with features of de novo and t-AML with MLLT3-MLL being similar.

The mixed lineage leukemia (MLL) gene located at chromosome 11q23 encodes a transcription factor with pleiotropic effects on hematopoietic gene expression and chromatin remodeling.1 MLL fusion with 1 of more than 50 different known chromosomal partners produces acute leukemias with a nearly uniform poor outcome.2,3 The t(9;11)(p21-22;q23) chromosomal translocation and its variants, hereafter described as t(9;11)-AML, fuses the MLL gene with MLLT3 (also known as AF9 or LTG9) and is the most common MLL translocation producing acute myeloid leukemia (AML). t(9;11)-bearing-AML can occur as a primary neoplasm (de novo) or secondarily as a result of previous therapy (t-AML), most commonly with topoisomerase II inhibitors.4,5 Previous studies on the tumorigenesis of the MLLT3-MLL fusion indicate that it mostly produces AML with a monocytic immunophenotype and has an aggressive course with frequent relapse and short survival.3,4

The 2008 classification of the World Health Organization (WHO) divides AML into various prognostic categories based on clinical, morphologic, immunophenotypic, and molecular genetic alterations.6 De novo AML with t(9;11) is classified under the WHO heading of “AML with recurrent genetic abnormalities,” whereas t-AML with t(9;11) is placed separately in the category of “therapy-related myeloid neoplasms.”5,7 In this study, we assessed whether this separation of de novo and therapy-related cases was warranted by comparing clinical, morphologic, immunophenotypic, genetic, and epigenetic features and found similar patterns in both
groups. By using karyotype, genomic profiling, and mutation analysis, we also identified genetic factors contributing to leukemogenesis and disease progression in t(9;11)-AML.

Materials and Methods

Patients and Workup

This institutional review board–approved study included 61 patients with acute leukemias harboring t(9;11)(p21-22;q22) seen at our institution between 1995 and 2007. Diagnoses were based on current WHO classification criteria using a combination of clinical and morphologic features and cytochemical, flow cytometric (FC), and immunohistochemical methods (Table 1). Separation of our patient cohort into de novo vs t-AML was based on the definitions provided by the current WHO classification. All patients with t-AML were previously treated for a prior malignancy with chemotherapy and/or radiation. Presence of myeloid, erythroid, and/or megakaryocytic dysplasia was based on morphologic criteria outlined in the current WHO classification. Cytochemical stains for myeloperoxidase (a marker of differentiated myeloid blasts) and nonspecific esterase/butyrate esterase (NSE; a marker of differentiated monoblasts and monocytes) were used to establish blast lineage.

A standard FC panel was performed on diagnostic bone marrow (BM) aspirate samples, including the markers CD3, CD4, CD7, CD8, CD10, CD13, CD14, CD15, CD19, CD20, CD34, CD38, CD64, and CD117, as well as HLA-DR and CD34, CD38, CD64, and CD117, as well as HLA-DR and CD117.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Clinicopathologic Features of 61 Patients With AML Harboring the MLLT3-MLL Translocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>No. (%) of Cases with karyotype at diagnosis (with progression)</td>
</tr>
<tr>
<td>M0</td>
<td>3 (5)</td>
</tr>
<tr>
<td>M1</td>
<td>9 (15)</td>
</tr>
<tr>
<td>M2</td>
<td>8 (13)</td>
</tr>
<tr>
<td>M4</td>
<td>16 (26)</td>
</tr>
<tr>
<td>M5</td>
<td>25 (41)</td>
</tr>
<tr>
<td>MPO (>20%)</td>
<td>23</td>
</tr>
<tr>
<td>NSE (>20%)</td>
<td>34</td>
</tr>
<tr>
<td>No. (%) with karyotype at diagnosis (with progression) MLLT3-MLL only</td>
<td>40 (23)</td>
</tr>
<tr>
<td>Other changes</td>
<td>21 (38)</td>
</tr>
<tr>
<td>Mutational analysis</td>
<td>No. (%) with Ras mutation</td>
</tr>
<tr>
<td>KRAS, NRAS, both</td>
<td>10, 5, 3</td>
</tr>
<tr>
<td>FLT3 TK only</td>
<td>3/48</td>
</tr>
<tr>
<td>FLT3 TK only</td>
<td>1/48</td>
</tr>
</tbody>
</table>

| Values for WBC and platelet counts are given in Système International values; conversions to conventional values are as follows: WBC count (/μL), divide by 0.001; platelet count (× 10^9/L), divide by 1.0. | Values for WBC and platelet counts are given in Système International values; conversions to conventional values are as follows: WBC count (/μL), divide by 0.001; platelet count (× 10^9/L), divide by 1.0. |

AML, acute myeloid leukemia; FLT3 TK, codon 835/836 kinase domain mutation; ITD, internal tandem duplication; MPO, myeloperoxidase; NSE, not statistically significant; NSE, nonspecific esterase; OS, overall survival.

* Unless otherwise indicated.

Initial therapies included cytarabine-containing regimens (27 idarubicin/cytarabine; 8 fludarabine/cytarabine; 3 doxorubicin, cytarabine, etoposide, and daunorubicin; 3 topotecan and cytarabine; 2 with liposomal daunorubicin/topotecan/thalidomide/cytarabine; and 1 low-dose cytarabine), 7 with demethylating agents (3 azacytidine, 4 decitabine), 3 with gemtuzumab ozogamicin (Mylotarg) with or without etoposide, 1 with daunorubicin/etoposide, 4 with investigational agents (2 VNP-40101M, 1 imatinib and LDAC), 1 with anti-CD33 immunotherapy (HUM-195/rGel), and 1 with hydroxyurea only. Allogeneic stem cell transplantation was done in first remission in 11 patients.

Deaths due to disease progression (n = 44), chemotherapy complications (n = 3), or transplant-related complications (n = 2).

Values for WBC and platelet counts are given in Système International values; conversions to conventional values are as follows: WBC count (/μL), divide by 0.001; platelet count (× 10^9/L), divide by 1.0.
terminal deoxynucleotidyl transferase. Monocytic morphologic features and NSE positivity were correlated with CD14, CD56, and CD64 expression. For statistical analysis, marker positivity was defined as expression in at least 10% of the blast population, with higher expression being defined as expression in greater than 75% of the blast population.

Cytogenetic, Genomic, and Mutation Analysis

Conventional G-banded karyotype analysis was performed on short-term cultures of BM aspirate. Fluorescence in situ hybridization for the MLL gene rearrangement was performed in a subset of 20 cases on metaphase spreads using a commercially available MLL break-apart probe (Abbott Molecular/Vysis, Downers Grove, IL). In a subset of samples, array-based comparative genomic hybridization (CGH) was performed on genomic DNA extracted from diagnostic BM samples containing at least 30% blasts. CGH was done using a 44,000-feature, customized, 60-mer oligonucleotide array (4 × 44 format, Agilent, Santa Clara, CA) using a mixed normal female DNA control (Promega, Madison, WI) as the reference sample, as previously described. Following laser scanning and feature extraction of the hybridized arrays, aberration calls were made using Nexus Copy Number 3.1 (Biodiscovery, El Segundo, CA) and compared by visual inspection using the Nexus viewer. Aberrations spanning fewer than 4 contiguous probes were not regarded as definitive.

FLT3 codon 835/836 and internal tandem duplication mutational status was performed by polymerase chain reaction (PCR)-based amplification of genomic DNA and capillary electrophoresis as previously described. Codons 12, 13, and 61 of KRAS and NRAS were sequenced following PCR amplification by using the Sanger or a pyrosequencing-based method as previously described.

MicroRNA Expression Profiling

RNA from diagnostic BM aspirate samples, available in 7 cases, was reverse transcribed to complementary DNA by using Megaplex RT primers and the TaqMan Micro RNA reverse transcription kit according to the manufacturer’s instructions (Applied Biosystems, Foster City, CA). Complementary DNA was loaded onto a TaqMan Human MicroRNA Array, v.2.0 (Applied Biosystems), centrifuged, and sealed. Each sample was run on 2 microfluidic cards (pool A and pool B) that assessed expression levels of 675 unique human microRNAs (miRNAs) via separate real-time PCR reactions. miRNA levels were quantified by using the PCR 9700 Thermocycler ABI Prism 7900HT and the sequence detection system (Applied Biosystems) according to the manufacturer’s instructions.

Statistical Analysis

Clinical features (age, sex, relapse status, time to relapse, persistent disease, transplant status, and presence of prior malignancy), hematologic features (initial blood leukocyte, blast, and platelet counts; hemoglobin levels; and initial percentage of BM blasts), morphologic features (presence of dysplasia, cytochemical or flow cytometric evidence of monocytic differentiation, French-American-British subtype, and flow cytometric immunophenotype), cytogenetic findings, and molecular genetic features were recorded as categorical variables to assess their impact on overall survival (OS) and progression-free survival (PFS) by the Kaplan-Meier method in combination with the log-rank test using Statistica 6 software (StatSoft, Tulsa, OK). Associations between clinical and pathologic features were determined through Kruskal-Wallis and Fisher exact tests. The Cox proportional hazards regression method was used for multivariate analyses. All reported *P* values were 2-sided and obtained by using the Statistica and/or SPSS software package (SPSS 15.0 for Windows, SPSS, Chicago, IL).

We analyzed miRNA expression data by using the R statistical package. Of 675 miRNAs, 297 were removed from the analysis because they were expressed at a very low level for at least 5 of 7 samples. For the remaining 378 miRNAs, the expression level of each miRNA was calculated by the ΔCt method. The ΔCt value was obtained by normalizing against the median Ct value of all test miRNAs for each sample. Differentially regulated miRNAs were identified as follows: First, the mean ΔCt value was calculated.

Table 2

<table>
<thead>
<tr>
<th>Primary Tumor</th>
<th>No. (%) of Cases</th>
<th>Regimens With Topoisomerase Inhibitors</th>
<th>Agents Used</th>
<th>Median Time to Leukemia, mo (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast carcinoma</td>
<td>18 (62)</td>
<td>17*</td>
<td>Doxorubicin (14); epirubicin (3)</td>
<td>25 (10-147)</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>4 (14)</td>
<td>4</td>
<td>Doxorubicin (3); irinotecan (1)</td>
<td>21 (12-38)</td>
</tr>
<tr>
<td>Large B-cell lymphoma</td>
<td>3 (10)</td>
<td>2*</td>
<td>Doxorubicin (2)</td>
<td>26 (24-29)</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>2 (7)</td>
<td>2</td>
<td>Doxorubicin (2)</td>
<td>24</td>
</tr>
<tr>
<td>Testicular carcinoma</td>
<td>1 (3)</td>
<td>1</td>
<td>Etoposide</td>
<td>72</td>
</tr>
<tr>
<td>Prostate carcinoma</td>
<td>1 (3)</td>
<td>0</td>
<td>—</td>
<td>24</td>
</tr>
</tbody>
</table>

* Treatment regimen unknown in the remaining case.
showed more variable expression of HLA-DR, whereas CD14, CD117, and myeloperoxidase markers included CD13, CD15, CD33, CD38, CD64, and CD15. The most commonly expressed marker (Table 1). Biphenotypic lymphoid/myeloid immunophenotype in 16 (26%) and M5 in 25 (41%) of 61 cases with monocytic differentiation in the blasts, including French-American-British type M4 in 16 (26%) and M5 in 25 (41%) of 61 cases with monocytic differentiation, whereas an immature blast phenotype was rare, with only 15 (25%) of 60 cases expressing CD34. Terminal deoxynucleotidyl transferase and CD56 expression were rare. In univariate analysis, cases with partial or complete monocytic differentiation were associated with shorter OS, when assessed by surface CD14 expression by FC (P = .017) or NSE cytochemical staining (P = .025).

Cytogenetic and Molecular Features
At diagnosis, t(9;11) (or related derivative chromosomes due to extra or complex MLLT3-MLL translocations) was the sole cytogenetic abnormality in 40 (66%) of 61 cases, with

Results

Summary of Demographic Features and Outcome
The 61 patients (22 males and 39 females) with t(9;11)-AML had a median age of 50 years (range, 1-81 years). There were 29 secondary cases occurring following therapy for other malignancies (t-AML) and 32 cases arising de novo (Table 1). Among t-AML cases, the most common preceding malignancy was breast carcinoma (21/35 [60%]) and 30 (86%) of 35 were treated with topoisomerase II inhibitors (mostly doxorubicin and epirubicin), including 25 with a regimen also containing alkylating agents (Table 2).

Following development of AML, most patients were treated with multiagent chemotherapy, most commonly anthracycline and cytarabine in 44 patients, followed by stem cell transplantation at first remission in 12 and after relapse in an additional 7 patients (see Table 1 footnote). The median OS was 11.3 months (range, 0.2-98.1 months), with 16 patients having persistent disease following therapy and 33 with relapses at a median time from initial diagnosis of 9.5 months (range, 0.5-72.5 months). At last follow-up, 49 (80%) of 61 patients had died of disease or transplant complications. Older age was associated with decreased PFS and OS (P = .0005; Table 1). There was not a strong correlation between outcome and initial hematologic features except for an adverse OS for patients with initial WBC counts of more than 15,000/μL (15 × 10⁹/L; P = .029; Table 1).

Correlation of Immunophenotypic Findings With Outcome
Most t(9;11)-AML cases showed at least partial monocytic differentiation in the blasts, including French-American-British type M4 in 16 (26%) and M5 in 25 (41%) of 61 cases (Table 1). Biphenotypic lymphoid/myeloid immunophenotypes were not observed. The most commonly expressed markers included CD13, CD15, CD33, CD38, CD64, and HLA-DR, whereas CD14, CD117, and myeloperoxidase showed more variable expression (Table 3). Of the 61 cases, 41 (67%) expressed at least 1 marker of monocytic differentiation, whereas an immature blast phenotype was rare, with only 15 (25%) of 60 cases expressing CD34. Terminal deoxynucleotidyl transferase and CD56 expression were rare. In univariate analysis, cases with partial or complete monocytic differentiation were associated with shorter OS, when assessed by surface CD14 expression by FC (P = .017) or NSE cytochemical staining (P = .025).

Cytogenetic and Molecular Features
At diagnosis, t(9;11) (or related derivative chromosomes due to extra or complex MLLT3-MLL translocations) was the sole cytogenetic abnormality in 40 (66%) of 61 cases, with

Summary of Demographic Features and Outcome
The 61 patients (22 males and 39 females) with t(9;11)-AML had a median age of 50 years (range, 1-81 years). There were 29 secondary cases occurring following therapy for other malignancies (t-AML) and 32 cases arising de novo (Table 1). Among t-AML cases, the most common preceding malignancy was breast carcinoma (21/35 [60%]) and 30 (86%) of 35 were treated with topoisomerase II inhibitors (mostly doxorubicin and epirubicin), including 25 with a regimen also containing alkylating agents (Table 2).

Following development of AML, most patients were treated with multiagent chemotherapy, most commonly anthracycline and cytarabine in 44 patients, followed by stem cell transplantation at first remission in 12 and after relapse in an additional 7 patients (see Table 1 footnote). The median OS was 11.3 months (range, 0.2-98.1 months), with 16 patients having persistent disease following therapy and 33 with relapses at a median time from initial diagnosis of 9.5 months (range, 0.5-72.5 months). At last follow-up, 49 (80%) of 61 patients had died of disease or transplant complications. Older age was associated with decreased PFS and OS (P = .0005; Table 1). There was not a strong correlation between outcome and initial hematologic features except for an adverse OS for patients with initial WBC counts of more than 15,000/μL (15 × 10⁹/L; P = .029; Table 1).

Correlation of Immunophenotypic Findings With Outcome
Most t(9;11)-AML cases showed at least partial monocytic differentiation in the blasts, including French-American-British type M4 in 16 (26%) and M5 in 25 (41%) of 61 cases (Table 1). Biphenotypic lymphoid/myeloid immunophenotypes were not observed. The most commonly expressed markers included CD13, CD15, CD33, CD38, CD64, and HLA-DR, whereas CD14, CD117, and myeloperoxidase showed more variable expression (Table 3). Of the 61 cases, 41 (67%) expressed at least 1 marker of monocytic differentiation, whereas an immature blast phenotype was rare, with only 15 (25%) of 60 cases expressing CD34. Terminal deoxynucleotidyl transferase and CD56 expression were rare. In univariate analysis, cases with partial or complete monocytic differentiation were associated with shorter OS, when assessed by surface CD14 expression by FC (P = .017) or NSE cytochemical staining (P = .025).

Cytogenetic and Molecular Features
At diagnosis, t(9;11) (or related derivative chromosomes due to extra or complex MLLT3-MLL translocations) was the sole cytogenetic abnormality in 40 (66%) of 61 cases, with
the most common additional cytogenetic changes at diagnosis being +8 in 7 (33%), +6 in 2 (10%), and +21 in 2 (10%) of 21 cases. Array CGH analysis performed in 15 cases with sole t(9;11) at diagnosis demonstrated no other detectable genomic aberration in 11 cases. In 1 case, +8 not detected by karyotype was shown, and 3 showed several small loci of extra chromosomal material, with gains of chromosome 1p13 spanning the NOTCH2 gene and chromosome 4q28 spanning PLK4 seen in 2 cases each.

With disease progression and/or relapse, repeated karyotypes demonstrated 25 (74%) of 34 cases with other chromosomal changes unrelated to the MLL3-MLL translocation. These additional chromosomal changes were heterogeneous, including exclusively chromosome copy number aberrations (most commonly +8 in 3 and +21 in 2 cases), structural chromosomal changes, or complex karyotypes with different types of aberrations. The presence of additional karyotypic changes at diagnosis besides MLL3-MLL translocation (detected by CGH or karyotype) was not significantly associated with an adverse outcome.

Mutation of KRAS or NRAS was found at diagnosis in 18 (36%) of 50 cases and correlated with monocytic blast phenotype (CD14+, P = .01; NSE+, P = .05) and FLT3 mutations were identified in 4 (8%) of 48 cases overall, including 3 with t-AML, and were mutually exclusive with Ras mutations. The few cases with FLT3 mutation had an aggressive clinical course consisting of persistent disease or relapse, but this observation was not statistically significant. The blasts in Ras-mutated cases rarely expressed CD34, and +8 was more common in cases with FLT3 or Ras mutations compared with cases without either change (7/18 vs 1/4 vs 2/24, respectively); +21 was also associated with Ras mutation (3/5 cases) but not with FLT3 mutation (1/4) or cases without either (1/24). Overall, Ras or FLT3 mutations were much more commonly associated with cases showing single chromosome aneuploidy (mostly +8 and +21; P = .01) and had a trend toward decreased OS (P = .07), supporting a complementary role with MLL3-MLL of Ras pathway activation in oncogenesis.

Given this apparent association between growth factor mutations and aggressive course, we assessed whether a Ras/FLT3-driven miRNA expression pattern could be identified in 7 cases with adequate RNA and high blast counts. By profiling 675 miRNAs using a TaqMan-based quantitative PCR method, we noted low expression of members of the let-7 miRNA family, including hsa-let-7f, hsa-let-7g, and hsa-let-7i (all P values < .005), which are known to modulate the Ras pathway. Higher expression of miRNA-92a was seen in Ras-mutated (n = 3) as compared to not mutated (n = 4) cases (P = .04). There were no statistically significant differentially expressed miRNAs between de novo AML (n = 2) and t-AML (n = 5). We also evaluated the contribution of aneuploidy to miRNA expression; 6 (30%) of 20 of the most highly expressed miRNAs were located on chromosome 3 (not commonly involved in copy number alterations), whereas miRNAs located on the frequently aneuploid chromosomes 6, 8, and 21 were not overexpressed except in 1 case.

Correlations Between Genetic and Immunophenotypic Features in t(9;11) Acute Myeloid Leukemia

<table>
<thead>
<tr>
<th>Findings/Association</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutational status</td>
<td></td>
</tr>
<tr>
<td>NRAS or K Ras mutation</td>
<td>.05</td>
</tr>
<tr>
<td>Monocytic differentiation (>20% NSE+)</td>
<td>.01</td>
</tr>
<tr>
<td>CD14 expression in blasts by FC</td>
<td>.02</td>
</tr>
<tr>
<td>Any Ras or FLT3 mutation</td>
<td>.03</td>
</tr>
<tr>
<td>Aneuploid changes on karyotype</td>
<td>.01</td>
</tr>
<tr>
<td>Shorter OS</td>
<td>.07</td>
</tr>
<tr>
<td>Cytogenetic findings</td>
<td></td>
</tr>
<tr>
<td>Aneuploid changes on karyotype</td>
<td>.04</td>
</tr>
<tr>
<td>Decreased PFS</td>
<td>.03</td>
</tr>
<tr>
<td>Increased HLA-DR expression by FC</td>
<td>.01</td>
</tr>
<tr>
<td>Increased MPO expression by FC</td>
<td>.01</td>
</tr>
<tr>
<td>FLT3 or NRAS/K Ras mutation</td>
<td>.01</td>
</tr>
</tbody>
</table>

© American Society for Clinical Pathology

DOI: 10.1309/AJCPGII1TT4NYOGI

Correlations Between Genetic and Immunophenotypic Features in t(9;11) Acute Myeloid Leukemia
of Ras mutations in t-AML and de novo cases (9/22 vs 9/28, respectively) and a similar distribution of NRAS vs KRAS mutation sites. In a Cox proportional hazards regression model incorporating significant or borderline significant factors predicting for OS in univariate analysis (from Table 1 and Table 4: age > 60 years, female sex, t-AML, initial WBC count > 15,000/μL [15 × 10⁹/L], markers of monocytic differentiation, FLT3/Ras mutation, and stem cell transplant status), only no transplant (relative risk [RR], 13.6; \(P = .0002 \)), older age (RR, 2.6; \(P = .008 \)), high WBC count (RR, 2.1; \(P = .03 \)), and NSE positivity in blasts (RR, 1.5; \(P = .04 \)) operated as adverse predictors after adjustment of other covariates, with sex and t-AML status eliminated.

Discussion

We confirm an aggressive clinical course in nearly all cases of t(9;11)-AML, with frequent and rapid relapses following initial response to anthracycline/cytarabine-based chemotherapy. Although the current WHO classification separates t-AML and de novo AML into separate categories, we demonstrate that the ranges of morphologic, immunophenotypic, and genetic features are similar between these 2 groups in t(9;11)-AML. Shared properties included frequent monocytic differentiation in blasts (67% M4/M5), common absence of CD34 expression in blasts (~75%), frequent mutation in NRAS or KRAS (36%), and low incidence of FLT3 mutation (8%) compared with other AML subtypes.

The major differences noted were that treatment-related cases were more likely to be in older patients and occur in women and had a slightly worse outcome, which was not significant in a multivariate model that incorporated age and blast phenotype. Indeed, all of these differences in t-AML could be attributable to the finding that the majority of these cases arose in patients with advanced-stage breast cancer treated with topoisomerase inhibitors, which is a disease setting preferentially associated with older women. In a review of other t-AML cases diagnosed at our institution during the same period, 62.0% of patients with t(9;11) t-AML had previously treated breast cancer compared with only 18.8% of patients with t-AMLs with any other cytogenic...
exposure to DNA-damaging cytotoxic chemotherapy is one
therapy exposure. A direct effect of the MLL protein on
bearing blasts to chromosome missegregation following che-
suggest that there may be a high intrinsic sensitivity of t(9;11)-
rapid clonal progression even more remarkable. These results
absence of other preexisting genomic aberrations, making the
formed on a subset of the diagnostic samples confirmed the
commonly present at initial diagnosis. Indeed, array CGH per-
changes in contrast with the sole induction therapy, frequently contained additional karyotypic
relapses, through or influenced by aberrant Ras signaling.27
changes between de novo and t-AML cases that would warrant separate recognition.

The reasons for such poor outcomes in t(9;11)-AML appear primarily related to a high rate of rapid relapses fol-
lowing successful induction chemotherapy. These relapses, which often occurred in 1 to 4 months following successful
induction therapy, frequently contained additional karyotypic changes in contrast with the sole MLL3-MLL translocation commonly present at initial diagnosis. Indeed, array CGH per-
formed on a subset of the diagnostic samples confirmed the
absence of other preexisting genomic aberrations, making the
rapid clonal progression even more remarkable. These results
suggest that there may be a high intrinsic sensitivity of t(9;11)-
bearing blasts to chromosome missegregation following che-
motherapy exposure. A direct effect of the MLL protein on
overriding the checkpoint block signals that arise following exposure to DNA-damaging cytotoxic chemotherapy is one
possible mechanism for this effect.15

In mouse models, the MLL3-MLL gene fusion has been shown to disrupt proliferation and survival of some myeloid
progenitors, thereby indirectly driving monocytic outgrowth,16
but the fusion appears insufficient in these models to directly
induce leukemia.17 Complementing genetic events in AML often include growth factor mutations that can be subtype-
specific, such as the association of KIT mutations with inv(16)-
and t(8;21)-bearing AML. Our study implicates Ras
pathway dysregulation as a common secondary transforming
factor in MLL3-MLL-AML, either through Ras point muta-
tions18-20 or possibly by down-regulation of let-7 miRNA
species. The effects of Ras activation on tumor phenotype are
complex, with effects on suppressing apoptosis and arrest of hematopoietic differentiation.21,22 In that regard, Ras mutations
have been shown to synergize with MLL3-MLL in vitro by suppressing apoptosis and blocking differentiation.23
Let-7 miRNA alterations have also been commonly reported
in other AML subtypes with simple karyotypes,12,24-26 and it
remains to be determined whether these effects are mediated
through or influenced by aberrant Ras signaling.27

Although Ras mutations are common in all AML sub-
types with monocytic differentiation, their prognostic sig-
nificance has been difficult to demonstrate.28 We show herein that Ras mutation was associated with a modest adverse effect on PFS in t(9;11)-AML (Figure 3), suggesting that blockade of this pathway may improve outcomes. Farnesyltransferase
inhibitors can inhibit Ras signaling (at least in vitro) and have shown some single-agent efficacy in myeloproliferative
neoplasms harboring Ras mutations, such as chronic myelo-
 monocytic leukemia,29 and possibly in combination therapy
in AML.30 If the frequent Ras pathway dysregulation is con-
firmed in subsequent studies, specific targeting of the t(9;11)-
AML subtype with adjuvant farnesyltransferase inhibitors
may be warranted. Given the rapid relapses and high rate of
genomic progression following chemotherapy, adjuvant stra-
tegies to reduce the level of residual disease are likely to be
critical to improving outcome in t(9;11)-AML.

References

1. Hess JL. MLL: a histone methyltransferase disrupted in
and translocations involving chromosomal band 11q23 in
MLL abnormalities as defined by the WHO classification:
incidence, partner chromosomes, FAB subtype, age
distribution, and prognostic impact in an unselected
series of 1897 cytogenetically analyzed AML cases. Blood.
malignancies with t(9;11)(p21-22;q23): a laboratory and
clinical study of 125 cases. European 11q23 Workshop
participants. Leukemia. 1998;12:792-800.
5. Bloomfield CD, Archer KJ, Mrozek K, et al. 11q23 balanced
chromosome aberrations in treatment-related myelodysplastic
syndromes and acute leukemia: report from an international
6. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification
of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed.
Genetics of therapy-related myelodysplasia and acute myeloid
oligonucleotide array–based comparative genomic
hybridization as a clinical assay for genomic profiling of
mutations are detectable in chronic and blast phase of
chronic myeloproliferative disorders other than chronic
genomic organization and expression profile in leukemia cell
COLD-PCR for improved detection of KRAS mutations
in clinical samples [published online ahead of print May 8,

From the Departments of 1Hematopathology, 2Bioinformatics and
Computational Biology, and 3Leukemia, The University of Texas
M.D. Anderson Cancer Center, Houston.

Address reprint requests to Dr Jones: Quest Diagnostics,
Nichols Institute, 14225 Newbrook Dr, Chantilly, VA 20151;
dan.jones@questdiagnostics.com.

Acknowledgments: We thank John Galbincea and Bedia
Barkoh for assistance with mutation analysis.

